Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Leukoc Biol ; 113(3): 315-325, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36808495

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is still fatal in many cases. T cell blasts are characterized by hyperactivation and strong proliferative and migratory capacities. The chemokine receptor CXCR4 is involved in mediating malignant T cell properties, and cortactin has been shown to control CXCR4 surface localization in T-ALL cells. We have previously shown that cortactin overexpression is correlated with organ infiltration and relapse in B-ALL. However, the role of cortactin in T cell biology and T-ALL remains elusive. Here, we analyzed the functional relevance of cortactin for T cell activation and migration and the implications for T-ALL development. We found that cortactin is upregulated in response to T cell receptor engagement and recruited to the immune synapse in normal T cells. Loss of cortactin caused reduced IL-2 production and proliferation. Cortactin-depleted T cells showed defects in immune synapse formation and migrated less due to impaired actin polymerization in response to T cell receptor and CXCR4 stimulation. Leukemic T cells expressed much higher levels of cortactin compared to normal T cells that correlated with greater migratory capacity. Xenotransplantation assays in NSG mice revealed that cortactin-depleted human leukemic T cells colonized the bone marrow significantly less and failed to infiltrate the central nervous system, suggesting that cortactin overexpression drives organ infiltration, which is a major complication of T-ALL relapse. Thus, cortactin could serve as a potential therapeutic target for T-ALL and other pathologies involving aberrant T cell responses.


Assuntos
Cortactina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Linfócitos T/metabolismo , Leucócitos , Recidiva , Movimento Celular/fisiologia
2.
Front Immunol ; 13: 979749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059446

RESUMO

Mucosal innate immunity functions as the first line of defense against invading pathogens. Members of the IL-1 family are key cytokines upregulated in the inflamed mucosa. Inflammatory cytokines are regulated by limiting their function and availability through their activation and secretion mechanisms. IL-1 cytokines secretion is affected by the lack of a signal peptide on their sequence, which prevents them from accessing the conventional protein secretion pathway; thus, they use unconventional protein secretion pathways. Here we show in mouse macrophages that LPS/ATP stimulation induces cytokine relocalization to the plasma membrane, and conventional secretion blockade using monensin or Brefeldin A triggers no IL-36γ accumulation within the cell. In silico modeling indicates IL-36γ can pass through both the P2X7R and Gasdermin D pores, and both IL-36γ, P2X7R and Gasdermin D mRNA are upregulated in inflammation; further, experimental blockade of these receptors' limits IL-36γ release. Our results demonstrate that IL-36γ is secreted mainly by an unconventional pathway through membrane pores formed by P2X7R and Gasdermin D.


Assuntos
Imunidade nas Mucosas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Transporte Biológico , Citocinas/metabolismo , Interleucina-1 , Camundongos
3.
Emerg Microbes Infect ; 9(1): 2000-2012, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32873215

RESUMO

Burkholderia cenocepacia is an emerging opportunistic pathogen for people with cystic fibrosis and chronic granulomatous disease. Intracellular survival in macrophages within a membrane-bound vacuole (BcCV) that delays acidification and maturation into lysosomes is a hallmark of B. cenocepacia infection. Intracellular B. cenocepacia induce an inflammatory response leading to macrophage cell death by pyroptosis through the secretion of a bacterial deamidase that results in the activation of the pyrin inflammasome. However, how or whether infected macrophages can process and present B. cenocepacia antigens to activate T-cells has not been explored. Engulfed bacterial protein antigens are cleaved into small peptides in the late endosomal major histocompatibility class II complex (MHC) compartment (MIIC). Here, we demonstrate that BcCVs and MIICs have overlapping features and that interferon-gamma-activated macrophages infected with B. cenocepacia can process bacterial antigens for presentation by class II MHC molecules to CD4+ T-cells and by class I MHC molecules to CD8+ T-cells. Infected macrophages also release processed bacterial peptides into the extracellular medium, stabilizing empty class I MHC molecules of bystander cells. Together, we conclude that BcCVs acquire MIIC characteristics, supporting the notion that macrophages infected with B. cenocepacia contribute to establishing an adaptive immune response against the pathogen.


Assuntos
Antígenos de Bactérias/imunologia , Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/patogenicidade , Interferon gama/farmacologia , Macrófagos/imunologia , Animais , Apresentação de Antígeno , Burkholderia cenocepacia/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Técnicas de Cultura de Células , Células Cultivadas , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos
4.
Vector Borne Zoonotic Dis ; 18(12): 709-712, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260733

RESUMO

Leishmania mexicana is an intracellular parasite that causes cutaneous leishmaniasis (CL) in some countries, including Mexico. Recently, we identified the elongation factor-1α (EF-1α) of L. mexicana by immunoproteomic analysis. In Leishmania donovani, this molecule has been reported as a virulence factor involved in downregulation of macrophages by no-canonical function when EF-1α interacts with protein tyrosine phosphatase-1 (SHP-1). However, in L. mexicana the key role of EF-1α in host-parasite relationship has not been elucidated, by this reason we started with cloning and recombinant expression of this antigen. A sequence of 1350 bp corresponding to EF-1α (EF-Lm) full-length gene was amplified from genomic DNA of L. mexicana (GenBank: MG256973); this gene contains only one nucleotide change: C464T, compared with L. mexicana reference sequence (GenBank: FR799570.1). The gene cloned (EF-Lm) codes for a protein of 449 residues. It was expressed in Escherichia coli and purified as 63 kDa sumo-fusion protein, which was recognized in the sera of patients diagnosed with CL. Our results show that EF-Lm is immunogenic during infection, and the rEF-Lm could be used for further analyses in the host-parasite relationship.


Assuntos
Clonagem Molecular , Leishmania mexicana/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA de Helmintos , Regulação da Expressão Gênica , Leishmania mexicana/genética , Fator 1 de Elongação de Peptídeos/genética
5.
Vector Borne Zoonotic Dis ; 15(7): 449-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26186518

RESUMO

Previously, we identified five Leishmania mexicana antigens reacting with antibodies from cutaneous leishmaniasis patients, designated on the basis of their molecular weights as p26 (pI 7.8), p27 (pI 8.1), p28 (pI 8.6), p29 (pI 8.5), and p31 (pI 9.0). Among these antigens, p29 was most strongly recognized by the antibodies. Thereafter, p29 was identified as elongation factor-1α (EF-1α) of Leishmania mexicana through mass spectrometry analysis and western blot using a commercial antibody that reacted with EF-1α from different species. Our results showed that the p29 antigen of Leishmania mexicana is EF-1α.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania mexicana/imunologia , Leishmaniose Cutânea/parasitologia , Fator 1 de Elongação de Peptídeos/imunologia , Animais , Proteômica
6.
Vet. Méx ; 43(1): 59-69, ene.-mar. 2012. ilus, tab
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-659611

RESUMO

Salmonella enterica serotypes are 99% responsible for salmonellosis in human and animals, especially Salmonella enterica serovar Albany that has been identified in chicken carcass representing a risk for human and animal health. Salmonella enterica serovar Albany was isolated from the feces of a male ocelot (Leopardus pardalis), at the zoo in Culiacan, Sinaloa, Mexico, and from raw chicken (feline's diet). The pulsed-field gel electrophoresis pattern (PFGE) generated by Xba I enzyme was identical in both isolates, indicating that the source of infection was the raw chicken. Five months after having isolated the bacteria from the feces, a post mortem study was carried out on the feline. Macroscopically, severe hemorrhagic enterocolitis and renal fibrosis was observed and microscopically, there was evidence of severe mononuclear lymphocytic infiltration in the ileum, as well as necrosis of intestinal villi and crypts, besides severe multifocal interstitial nephritis and fibrosis in both kidneys. The invA gene was amplified from intestinal samples confirming an infection by Salmonella. The microbiologic, molecular and histopathology diagnoses suggest that death of the feline was caused by ingestion of raw chicken contaminated with Salmonella enterica serovar Albany. This clinical case highlights the importance of persistent fecal Salmonella shedding animals and describes the molecular epidemiological relationships of isolates from feces and food, which allowed to find the primary source of infection.


Los serotipos de Salmonella especie enterica son los responsables del 99% de las salmonelosis en humanos y animales, en particular, Salmonella enterica serovariedad Albany se ha identificado en canales de pollo, por lo que representa un riesgo para la salud humana y animal. Se aisló Salmonella enterica serovariedad Albany a partir de heces de un ocelote macho (Leopardus pardalis), cautivo en el zoológico de Culiacán, Sinaloa, México, y de pollo crudo (alimento del felino). El patrón por electroforesis en campo pulsado (PFGE) con la enzima Xba I fue idéntico en ambos aislados, lo que indica que la fuente de infección fue el pollo crudo. Cinco meses después de haber aislado las bacterias de las heces, se realizó estudio post mortem del felino anteriormente mencionado, y se observó macroscópicamente: enterocolitis hemorrágica severa y fibrosis renal; y microscópicamente: necrosis de vellosidades y de criptas e infiltrado mononuclear linfocitario severo en íleon, además nefritis intersticial severa multifocal y fibrosis en riñón. A partir de muestras intestinales se amplificó el gen invA que confirma la infección por Salmonella. Los diagnósticos microbiológico, molecular e histopatológico sugieren que la muerte del felino se debió a la infección causada por la ingesta de pollo crudo contaminado con Salmonella enterica serovariedad Albany. Este caso clínico confirma la importancia que tienen los animales que excretan Salmonella vía fecal y describe la relación epidemiológica-molecular de los aislamientos obtenidos de heces y alimento, lo que permitió esclarecer la fuente primaria de infección.

7.
Cell Cycle ; 10(16): 2792-805, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21822052

RESUMO

The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with Obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirróis/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição YY1/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Indóis , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Transcrição YY1/genética
8.
J Exp Bot ; 55(408): 2533-9, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15448177

RESUMO

Rubisco activase (RCA) is a molecular chaperone present in maize as 43 kDa and 41 kDa polypeptides. They are encoded by two different genes comprising an identical ORF that corresponds to the 43 kDa RCA polypeptide, and their transcripts do not show putative splicing sites. To determine the origin of the 41 kDa polypeptide, leaf poly A(+) mRNA was in vitro translated. Results demonstrated de novo synthesis only for the 43 kDa RCA. Antibodies developed against peptides from either the carboxy- or the amino-terminal end of 43 kDa RCA showed by western blot that the 43 kDa polypeptide amino-terminal region is missing in the 41 kDa polypeptide, whereas both RCA polypeptides shared the carboxy-end region. Regulation of RCA polypeptide ratios was determined in plant leaves at different developmental stages and under stressing environmental conditions. Increased levels of 43/41 kDa RCA ratio were found in leaves under low light exposure, whereas this ratio declined under water stress. Measurements of chaperone activity either on each RCA polypeptide alone or in a mixture showed the functional relevance of different 43/41 kDa RCA polypeptide ratios. Greater chaperone activity was found for the 41 kDa than for the 43 kDa polypeptide. Taken together, these results indicate that 41 kDa RCA polypeptide formation is regulated by limited proteolysis of the 43 kDa RCA at its amino-terminal region. This pathway is sensitive to developmental and environmental signals, and seems to play a relevant function during plant stress.


Assuntos
Chaperonas Moleculares/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Zea mays/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Luz , Fases de Leitura Aberta/fisiologia , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Plântula/metabolismo , Zea mays/crescimento & desenvolvimento
9.
Arch. med. res ; 30(4): 298-302, jul.-ago. 1999. graf
Artigo em Inglês | LILACS | ID: lil-266533

RESUMO

Background. Several factors inhibit cellular immune response by deactivating macrophages, but very few, such as those described here, prevent macrophage activation. Methods. Ascites liquid from 12-day-old BALB/c mice bearing 5178Y lymphoma tumors was collected, and cell-free ascites liquid (CFAL) was separated from lymphoblasts. The supernatant (SI) was obtained from the homogenized and centrifuged lymphoblasts Then, macrophage cultures contaning 0.2 X 10 a the sixth cells from lymphoma-bearing or hearthly mice were added to 10 µL of CFAL or S1, plus 5 µg of lipopolysaccharides (LPS)/mL, 40 U interferon-ç or a blend of both. Macrophages were incubated with CFAL or S1 prior to or after adding the activators to investigate whether any of the previously mentioned lymphoma fraction inhibited macrophage activation or whether they deactivated them. The effect of CFAL or S1 was estimated as the diminution of the amount of nitric ixide released by the experimental macrophage cultures with respect to controls (activated macrophages treated with none of the lymphoma fractions). Results. LPS, IFN-ç, and the LPS/ç blend activated macrophages from both lymphomabearing and healthy mice. None of the lymphoma fractions deactivated macrophages. CFAL, but not S1, inhibited the macrophage activation, i.e., the percentage of inhibition of nitric oxide releasing 76.7 percent in macrophages from healthy and lymphomabearing mice, respectively. In addition, CFAL was unable to inhibit macrophage-activation effect of IFN-ç or the LPS/IFN-ç blend. Conclusions. Mouse L5178Y Lymphoma releases a factor that in vitro inhibits the macrophage activation induced by LPS, but not by IFN-ç controls


Assuntos
Animais , Masculino , Camundongos , Ativação de Macrófagos/imunologia , Linfoma/imunologia , Macrófagos/imunologia , Interferon-alfa/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Mitógenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...